
J.  Fluid Mech. (1996), vol. 307, pp,  85-99 
Copyright 0 1996 Cambridge University Press 

85 

Onset of folding in plane liquid films 

By A. L. YARIN’ A N D  B. M. TCHAVDAROV’ 
Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel 

Institute of Mechanics, Bulgarian Academy of Sciences, Sofia 1 1 13, Bulgaria 

(Received 14 October 1994 and in revised form 25 August 1995) 

The onset of the folding effect characteristic of highly viscous liquid films (plane jets) 
slowly impinging on a wall is studied. Nonlinear quasi-one-dimensional equations are 
derived to describe the flow. In the linear approximation they reduce to the eigenvalue 
problem, whose solution predicts that instability (the onset of folding) sets in when the 
length of the film exceeds a critical value. The critical folding heights and the oscillation 
frequencies at the onset of instability are predicted as a function of flow parameters. 
Theoretical results are compared with Cruickshank’s (1 988) experimental data. 
Agreement is quite good only in the range of parameters where the quasi-one- 
dimensional approximation is applicable (thin films at the onset of folding). 

1. Introduction 
Interest in the folding phenomenon in liquid films was stimulated by an article by 

Taylor (1969). Detailed reviews of folding phenomena in hydrodynamics (as well as of 
the related buckling phenomena) have been published by Entov & Yarin (1984b) and 
Bejan (1987). To put the present work in context we consider briefly some of the 
references reviewed by these authors, as well as additional ones. 

Buckmaster (1973) studied theoretically buckling of a thin viscous jet slowly falling 
in a state of near-neutral buoyancy through another liquid. A small constant drag 
acting on the jet from the bath liquid also was accounted for, whereas surface tension 
was neglected. Buckmaster, Nachman & Ting (1 975) considered theoretically buckling 
of a thin liquid thread (viscida) as its ends are slowly drawn together. Buckmaster & 
Nachman (1978) incorporated in the latter problem the effect of surface tension. 

The works of this group use an approach which may be characterized as ‘implicitly 
quasi-one-dimensional ’. They treat the case where the basic unperturbed liquid thread 
is uniform (in viscida the basic state is uniform and time-dependent), which precludes 
application of the results to the case where the basic flow is non-uniform at order one. 
The folding of thin liquid films (or buckling of jets) flowing from a slit (orifice) and 
impinging upon a plate studied experimentally by Cruickshank & Munson (198 1) and 
by Cruickshank (1988) provided such an example. Griffiths & Turner (1988) conducted 
experiments on plane liquid films impinging on the free surface of another immiscible 
liquid, or on an interface between two immiscible liquids - cases where compression is 
of order one. Such situations with strong compression of a film or a jet are of interest 
in the production of non-woven materials, or in geophysical applications. In the latter, 
buckling of a thin liquid layer in shear is also of importance (see Benjamin & Mullin 
1988 and references therein). 

The folding of thin liquid films impinging upon a plate (or buckling of thin liquid 
jets), studied by Cruickshank & Munson (1981) and Cruickshank (1988) attracted 
attention as a characteristic example of low-Reynolds-number instability. Folding of 
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FIGURE 1. Folding of a film (plane jet) impinging upon a plate. 1 ,  slit; 2, vertical cross-section of 
film; 3,  plate. Dashed-dotted lines represent the unperturbed and perturbed film axes. 

plane jets sets in only if the Reynolds number Re (under the conditions of film issue at 
the slit) does not exceed 0.56 (Cruickshank & Munson 1981). For Re < 0.56 the film 
length should exceed some critical value to cause folding. For Reynolds numbers larger 
than 0.56 the films are rectilinear and stable irrespective of their length. 

Folding of impinging liquid films is characteristic of such technological processes as 
production of non-woven materials, coating, and rapid solidification, as well as of such 
geophysical processes as lithospheric slab instability in the Earth's mantle (the latter is 
discussed in Griffiths & Turner 1988). 

Cruickshank (1 988) proposed a semi-empirical theory for the folding phenomenon 
of plane films, as well as for buckling of axisymmetric jets (both impinging upon a 
plate). In this theory surface tension and gravity force are neglected. Tchavdarov, 
Yarin & Radev (1993) developed a theory for buckling of an axisymmetric liquid jet 
in the framework of the quasi-one-dimensional approach to the theory of liquid jets 
(Entov & Yarin 1984a and Yarin 1993). Their results, accounting for all the forces 
involved, agree fairly well with experimental data, even though no empirical parameters 
are used. 

A similar quasi-one-dimensional approach is adopted in the present work. In $2 the 
quasi-one-dimensional equations of thin liquid films (plane jets) are obtained. Then in 
tj 3 this system of equations is linearized and reduced to an eigenvalue problem, which 
is solved numerically. The results obtained are presented, discussed and compared with 
the experimental data of Cruickshank (1988) in $4. The results obtained in the paper 
are summarized in $ 5 .  

2. Governing equations 
Asymptotic quasi-one-dimensional equations of liquid motion in non-steady curved 

axisymmetric jets were derived by Entov & Yarin (1984~).  In the present section 
we employ a similar approach to arrive at the equations for thin plane jets of films 
(figure 1). 

Consider a smooth time-dependent two-dimensional film axis T(t), given para- 
metrically by the equation Y = R(s, t),  s_ < s < s,, where s is an arbitrary parameter 
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and t time. A cross-section of a plane jet is normal to r a n d  the jet (film) is considered 
thin provided 

6 = max(:,ka) < 1, 

where h = 2a is the film thickness, 1 the characteristic lengthscale along the film axis 
and kits curvature. The position of a point or material particle in the film is determined 
by two parameters, s and y ,  where y is the coordinate in the cross-section along the 
normal to the film axis. The radius vector of that point or material particle is defined 
as 

(2.2) 

where n is the unit normal vector. 
At each point of the plane jet two velocities are defined: the velocity u of motion of 

a point with fixed coordinates ( y ,  s) (the reference-frame velocity associated with the 
jet) and the velocity u of motion of a material particle (the absolute velocity): 

r(y, s, t) = R(s, t )  +y+, t), 

aR dR 
u= u(O,s,t) = -, at v =  U ( O , S , t )  = -. dt 

(2.3 a, b) 

(2.3 c,  d )  

Here d( )/dt denotes material or substantial time differentiation in the ordinary 
hydrodynamic sense following the motion of the fluid (Lamb 1932, pp. 3 and 4), and 
U is the reference-frame velocity of the centre of the cross-section, whereas ‘v is the 
velocity of the liquid at that centre. 

The mass of liquid in the film between two cross-sections s1 and s, is 

where p is density and h is the axial stretch. 
The film cross-section with a fixed value of s moves. Therefore, transfer of mass (as 

well as momentum and moment of momentum) through it occurs at a velocity 
( u - u ) . ~  = u,-u,, where 7 is the unit tangent vector of the film axis. The mass flux 
through the film cross-section is 

The rate of change in the liquid mass enclosed between the cross-sections s1 and s, 
is equal to the difference of the mass fluxes through these cross-sections, which yields 
as s2 + s1 the differential continuity equation in the form 

Here and hereinafter the indexes 7 and n correspond to the tangent and normal of 

Below we consider an incompressible liquid. 
The folding process itself is a low-Reynolds-number phenomenon (Cruickshank & 

Munson 1981). Therefore, in the momentum and moment of momentum balance we 

the film axis. 



88 A .  L. Yarin and B. M .  Tchavdarov 

neglect the inertial forces and their moments (the corresponding estimate is given below 
in $4). We also neglect the forces and moments of forces imposed on the film by a gas 
environment. As a result we arrive at the following equations: 

A [ s’ a, dy] + phhg = 0, 
as -a 

(2 .7~)  

~ [ ~ ~ a r x ~ T d y ] + p h h R x g -  (2.7 b) 

where a,(y,s, t )  denotes the vector of stresses acting in the cross-section (a, = 7-a*, 

where a* is the stress tensor) and g the acceleration due to gravity 
Forming the vector product of R(s, t )  with (2 .7~)  and subtracting it from (2.7b), we 

arrive at 

Retaining in (2.6), (2 .7~)  and (2.8) the main terms in the thin-film approximation 
under the conditions (2. I), we arrive at the following asymptotic, quasi-one- 
dimensional equations of continuity, momentum and moment of momentum : 

(2.9 a-c) 

ahh a i a  
-+-[(V-U,)h]=O, --[Fr+Q]+hhg=O, at as Pas 

F = r . I a a T d y ,  Q = r  a,dy-Fr, M = L a y n x a , d y ,  Z = I a y 2 d y = 7 - .  2a3 

-a 
(2.9 d-g) 

The quantities 7F, Q, M and I represent the longitudinal force, the shearing force, 
the moment of stresses in the film cross-section, and the moment of inertia of the film 
cross-section. 

In the inertialess approximation the quasi-one-dimensional equations (2.9) are valid 
for large deflections of the film provided inequality (2.1) is not violated. Equations 
(2.9b,c) are well known in the theory of rod bending (cf. Landau & Lifshitz 1959, 
(19.2) on p. 79 and (19.3) on p. 80). They inevitably appear in low-dimensional models 
of liquid jets/films (or elastic rods). For example, equations (2.9b, c) with g = 0 are 
identical with equations (2.6~-c) of Buckmaster et al. (1975) who used them to describe 
buckling of a thin liquid thread as its ends are slowly drawn together. In general, 
considering a jet/film as a Cosserat line, one always arrives at similar quasi- 
one-dimensional equations. The only difference is in the terms accounting for radial 
inertial effects in a cross-section, which are small for long-wave perturbations (e.g. see 
Green 1976; Entov & Yarin 1984b, p. 125; Yarin 1993, p. 31). Note also that in the 
present work all inertial effects are neglected. 

As in Entov & Yarin (1984~) and Yarin (1993), we adopt an analogue of the 
hypothesis of flat cross-sections in the theory of rod bending and suppose that at each 
instant the velocity u of liquid particles in the film cross-section reduces mainly to a 
combination of the translational motion with the centre, rigid-body rotation about it, 
and expansion or contraction in the direction of the normal to the film axis: 

u = V+9,bxyn+Syn+u2 = V-Q,yr+Syn+v, (2.10~) 

V =  nv,+rv,, 0, = $&(y,s)n+$,(y,s)r. (2.10b,c) 



Onset of folding in plane 1iquidJilms 89 

Here Q, b is the angular velocity of the material cross-section, b the unit binormal 
vector to the film axis, and 6 the rate of expansion/contraction of the cross-section. The 
functions $1 may be expanded in series in y ,  starting with the second-order terms. 

The gradient operator V is 

(2.11) 

where x is the coordinate along the binormal to the film axis. In a plane jet all the 
parameters are independent of x. 

By means of (2.10) and (2.1 1) we obtain the components of the strain-rate tensor D : 

Dnn = $1,y, Dnb = Db,  = O ,  (2.124 b) 

D,, = 0, D,, = D,, = 0, (2.1 2 d, e)  

D,, = A-l ~,s -kVn-yh-1Qb, , -6yk+ykA-1  K,s -yk2  V,. (2.12f) 

It is emphasized that higher-order terms in y should not be retained in the thin-film 

The incompressibility condition tr D = 0 yields 
approximation. 

6 = -Ap1 y, ,+kVn, $1,, =y(h-1Qb,,+6k-kh-1 Y , ,+k2 V,). (2 .13~,b)  

Note that equations (2.13 a, b) result from a perturbation calculation that equates 

For a viscous Newtonian fluid 
terms at each order to zero. 

G* = -p/+2pD, (2.14) 

where cr* is the stress tensor, / the tensor unit, p pressure and ,u viscosity. 

unb = g b n  = O, 

Substituting (2.12) in (2.14) we arrive at 

grin = -P+2,u(6++1,,), (2.15 a, b) 

g b b  = -p, 
gm = -P + 2,~[A-l y, ,  -kV, +y( - A-lO,,, - 6k+kA-l y,s -k2Vn)]. 

g b T  = g , b  = 0, (2.15 d, e) 

(2.15f) 

With surface tension taken into account, we find from the Laplace formula that the 
capillary pressures under and over the free surfaces at y = f a  are 

(2.16) 

where y is the surface tension coefficient. 
Applying the conditions for the normal stress as in (2.15a), grin = -p; at y = --a 

and cnn = -p: at y = a, in the thin-film approximation we arrive at the following 
expression for the pressure : 

(2.17) 
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From (2.13), (2 .15f )  and (2.17) we find 

+ 4 p ~ ( - h - ~ Q ~ , , + 2 h - ~  y , , k - 2 k 2  V,). (2.18) 

The expressions for the axial value of the longitudinal stress and longitudinal force 
by (2.18) are of the form 

Owing to ( 2 . 9 f )  and (2.15 e) M = - b ?a ygrr  dy. Therefore, 

M ,  = M ,  = 0, (2.20a) 

(2.20b) 

The condition of smallness of stresses on the film surface (in contact with a gas 
environment) means that at the leading order (order one) stresses g,, and LT,, should 
be zero (or more accurately, O(m,,)), which from (2.15 c) yields 

Qb = h-l V,,,+ky. (2.21) 

The terms linear in y in (2.15 c) for v,, do not contribute to the value of the shearing 
force lQl. Therefore, in view of (2.21), lQl should be of O(s2F). In these circumstances 
an explicit expression for the shearing force is unobtainable within the framework of 
the asymptotics of the given accuracy, and it can be only determined from the solution 
of the problem. 

The equations of continuity, momentum and moment of momentum (2.9 a-c), may 
be rearranged in the following form: 

(2.22a, b)  
ahh a 
-+-[(V,-U,)h] = 0, h = 2a, 
at as 

(2.22~-e) 

where g, and g ,  denote the projections of gravity acceleration on the directions tangent 
and normal to the film axis. 

In the projection of the momentum equation onto the tangent, (2.22c), we neglected 
Q, compared to F, since lQl = O(c2P), whereas in its projection onto the normal, 
(2 .224 ,  Fhk and Q,  are of the same order of magnitude owing to the smallness of 
curvature of the film axis in the given problem. 

Note that to derive the quasi-one-dimensional equations of film folding (2.19)-(2.22) 
we used the integral balance method supplemented by the asymptotic representation 
(2.10) of the velocity field in a thin film. A similar approach has been used previously 
to derive quasi-one-dimensional equations of liquid fibres (Kase & Matsuo 1965 ; 
Matovich & Pearson 1969), bending and buckling liquid jets (Entov & Yarin 1984a, 
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Yarin 1993), hollow liquid films (Taylor 1959; Pearson & Petrie 1970a, b;  Yarin, 
Gospodinov & Roussinov 1994), etc. For flows with gradual longitudinal variation 
of parameters such a simple procedure provides exactly the same results as a direct 
perturbation expansion of the flow field and the Navier-Stokes equations, or averaging 
of the latter over a liquid cross-section (which was proved by Schultz & Davis 1982 for 
fibres, and by Yarin 1983 for bending and buckling jets). 

Equations (2.22), supplemented by (2.19)-(2.21) and the following geometric and 
kinematic relations : 

h = (1 + H:8)1'2, k = H,Jh3, (2.23a, b) 

(2.23 c, d )  

form the closed system of equations of the problem in the inertialess approximation. 
Note that in (2.23) we assume that H = H(s, t )  is the amplitude of displacement of the 
film axis in the direction Ox, in a Cartesian coordinate system Oxlz (see figure l), 
where the film axis at any moment and at all points forms an acute angle with the 
direction Oz of the unperturbed film axis (overturnings are forbidden since we proceed 
below to consider small perturbations). 

It is emphasized that where required (for example, if the folding amplitude becomes 
so large at the nonlinear stage as to lead to overturnings), parameter s of the film axis 
may be taken as a Lagrangian one. Formulae (2.23) should then be modified as was 
done in the corresponding problem on bending instability leading to overturns when 
a thin highly viscous liquid jet moves in air at high speed (see Yarin 1993, pp. 105 and 
106). Also in the case of drawing a film with a rectilinear axis through a slit (a 
counterpart of fibre spinning) or stretching jets produced by shaped charges, it is 
sometimes convenient to choose s as a Lagrangian parameter, namely the time moment 
at which a liquid particle left the slit (cf. Yarin 1993, pp. 17&172; Yarin 1994). In all 
these cases, all equations in the present section except (2.23), hold. 

3. Eigenvalue problem 
Below we use for s the Cartesian coordinate z, taken along the axis of an 

unperturbed film, as we are concerned with small folding perturbations. Therefore, 
from now on s = z. First, we consider the unperturbed distributions of the half- 
width ao(z), which correspond to rectilinear films. With longitudinal force taken as 
I; = 4,uhi3w/az+2y (w = y) ,  which simplifies (2.19), the continuity and longitudinal 
momentum equations (2.22a, c)  reduce to 

(3.1 a, b) 

Here and hereinafter in the equations in non-dimensional form we use as a scale of 
the half-width its value a,, at the slit exit (z = 0); the coordinate z and Hare  scaled by 
L, the slit/plate distance; velocities u = Vn and w = V,  are scaled by w:, the outflow 
velocity at the slit exit; time is scaled by L / w i ;  L, = L / a o ;  the non-dimensional 
parameter G is 

where g, = g and g,  = 0. 
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Equation (3.1 a)  is subject to the boundary conditions 

z=O:  aO=1; z =  1 :  aO=m (3.3) 

which represent a given film thickness at the slit exit and an impermeable plate. 

following form : 
The solution of (3.1a) and (3.3) was found by Cruickshank (1984) and has the 

2 
0 < p < - ,  

d 3  

2 0  1 
3P2 cosh [D1/'(z - l ) ]  - 1 ' ao(z) = - 

I L p=- 
4 3 '  

ao(z) = ~ 

( 1  -z)2' 

0 2 0  1 2 
a (z) = 2 

3p~c0s[(-D1)~~~(z-1)]-1~ P>1/,* 

(3.4a) 

(3.4b) 

(3 .44 

In (3.4a) D is a positive solution of the equation 

(3-5) 
3P2 2 
2 d 3  

D = -[COSh(D1/2)- 13, 0 < /3 < -, 

whereas in ( 3 . 4 ~ )  D, is a solution of 

3P2 2 

2 d3 
D, = - {COS [( - D1)1/2] - l } ,  P > - 

belonging to the interval ( -47r2, 0). 
If P < 7 ~ / 1 / 3  the film is in compression from the very beginning and daO/dz > 0, 

which means that the effect of liquid slowdown by the plate and the corresponding 
compressive viscous force outweigh the gravity acceleration. 

If /3 > 7t/2/3 the film is in tension from the slit up to some cross-section (dao/dz < 
0) and gravity acceleration predominates. The last portion of the film is, however, in 
compression and there daO/dz > 0, which corresponds to domination of the viscous 
force. 

Consider now small folding perturbations of the straight axis of the film, when in the 
linear approximation 

u = H , , ,  k = H  ,zz, h = l ,  U,=O.  (3.7 a-d) 

Linearizing, we get from (2.19a, b), (2.20b), (2.21) and (2.22a-e) the following 
dimensional equations : 

( 3 . 8 a c )  
ah ahw 1 i3F 
- + - = O ,  - -++g = 0, 
at az P az 

where 

(3.9a) 

and g is acceleration due to gravity. Note that the term -hkQ,/p in ( 2 . 2 2 ~ )  is 
obviously quadratic in perturbations and, thus, neglected in (3.8 b). 

Define an eigenfunction f ( z )  and an eigenvalue Y of the displacement amplitude 
H =f(z)exp(Yt). Substituting (3.9a,b) in ( 3 . 8 ~ )  and bearing in mind (3.7a, b), we find 
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0 0.2 0.4 0.6 0.8 1 .o 
L. 

FIGURE 2. Unperturbed film profiles corresponding to values of p2 indicated on the curves. 

in the linear approximation (around the unperturbed solution (3.4)) the following 
expression for the eigenfunction : 

----2r{ 8 duo d2f 1 aod2ao/dz2 
ao dz  dz2 [L2, + ( d ~ ~ / d z ) ~ ] ~ / ~  -k [L: + ( d ~ ~ / d z ) ~ ] ~ / ~  

p-+--+----- d2f 1 d3f 1 daod2f TL2, 1 
dz2 a0 dz3 ao2 dz dz2 4a0 [L.", + ( d ~ ~ / d z ) ~ ] ~ / ~  dz2 

where the non-dimensional parameter r is 

(3.10) 

(3.11) 

The coefficients in (3.10) depend on the unperturbed profile of the film ao(z) which 

Note that the remaining equations (3.8a, b) after subtracting an unperturbed part 

Equation (3.10) is supplemented by the following boundary conditions : 

is determined by (3.4k(3.6). 

satisfied by (3.4), yield two autonomous equations for perturbations of h and w.  

z = 0: f = 0, df/dz = 0, dy/dz2 = 0, (3.1 1 a-c) 
z = 1: f = 0, df/dz = 0, (3.11d,e) 

which express, respectively: (i) the absence of any displacement of the film axis at the 
slit exit (z = 0); (ii) the smooth junction of the tangent to the film axis and the slit exit; 
(iii) the absence of rotation of the liquid cross-section at the slit exit (which corresponds 
to 0, = 0 at z = 0); (iv) the absence of any displacement of the film axis at the plate 
(z = 1); (v) clamping of the film axis at the plate. 

These boundary conditions are discussed in detail by Tchavdarov et al. (1993). We 
mention here only that the clamp condition (3.11 e) corresponds to infinite spreading 
of the film over the plate, where its thickness and moment of inertia become extremely 
large, arresting any motion of the film section near the plate. 

Equation (3.10) is solved under the conditions (3.1 I)  numerically by applying the 
method discussed in detail by Tchavdarov et al. (1993). 
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FIGURE 3. Folding height L, as a function of viscous, gravity and surface-tension forces. (a)  Low 
surface tension: ylpgh; = 5.73 x __ , Theoretical results; 0, Cruickshank's (1988) ex- 
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4. Results, comparison with experiment and discussion 
In figure 2 the unperturbed profiles of the film are plotted for several values of p2 as 

predicted by (3.4). For comparison with the experimental data of Cruickshank (1988), 
we note that 

where Q’ = wi h, is the volume flow rate per unit slit width, h, = 2a, and wi is the 
outflow velocity. 

Critical values of L / h ,  for plane jets according to Cruickshank (1988) are of the 
order of ten. Therefore, from (4.1) we find 

The data in figure 2 show that about p2 = 0.5 the half-width in the middle of the film 
is approximately equal to the half-length of the film. Therefore, only films with p2 
significantly larger 0.5 may be treated under the quasi-one-dimensional approach. 
According to (4.2), only films with ,uQ’/pgh: significantly smaller than 33.33 may be 
characterized as thin in terms of the quasi-one-dimensional theory. 

The solution of the eigenvalue problem (3.10) and (3.11) predicts that instability sets 
in when the length of the film exceeds some critical value depending on the parameters 
of the flow. This manifests itself in the calculations as change of sign of the real part 
of the first eigenvalue from negative to positive. The results of the calculations are 
compared with the experimental data of Cruickshank (1988) in figure 3. It is clearly 
seen that the theory agrees with the experimental data only up to a value of ,uQ’/pghi 
of the order of several units. For higher values the theory overestimates the folding 
height. This is not surprising, since such higher values do not correspond to sufficiently 
thin films to qualify for the quasi-one-dimensional approach. 

Cruikshank & Munson (1981) and Cruickshank (1988) consider the inertial forces to 
be small compared with the viscous ones in their experiments with buckling and folding 
jets. Their ratio is given in the present case by the following Reynolds number: 

(4.3) 

Taking ,uQ‘/pghi - lo2, L / h ,  - 10, v = ,u/p - 10P2m2 s-l, h, - loP3 m and 
g - 10 m sP2 we get Re, - loP1. The latter estimate allows one to neglect the inertial 
forces as was done in the momentum and moment of momentum equations (2.7)--(2.9). 
It should be added that the effect of the inertial forces increases with ,uQ’/pgh:. This 
may partially account for the above-mentioned overestimation of the experimental 
data by the theoretical results at higher values of this parameter in figure 3. 

The theoretical results of figure 3(a-d) are combined in figure 4 to illustrate the 
stabilizing effect of surface tension on folding instability of viscous-gravity films. 
Similar trends characterize buckling instability of axisymmetric liquid jets (Tchavdarov 
et al. 1993). 

perimental data for W/h, = 5,  where W is the slit width. (b) Higher surface tension: y/pghi = 0.23. 
-, Theoretical results; Cruickshank’s (1988) experimental data: 0, W/h, = 5; A, W/h, = 10. (c) 
Still higher surface tension: y/pgh,2 = 0.59. ~ , Theoretical results; Cruickshank‘s (1988) 
experimental data for W/h, = 15; 0, h, x W =  0.24 x 3.58 cm; and a, h, x W = 0.198 x 2.97 cm. 
( d )  Still higher surface tension: y/pghi = 0.9. -, Theoretical results; 0, Cruickshank’s (1988) 
experimental data ( W/h, = 15). 
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1 0.1 F 1 10 100 

~Q'KPgh30) 

FIGURE 4. Effect of surface tension on folding height. Curves 1 4  refer to y/pghi  = 0, 0.23, 0.59 
and 0.9, respectively. 

The reason for the existence of a critical folding height, below which the film is 
stable, is the following. In accordance with (2.19), (2.20 b) and (2.22 d, e) the balance of 
the following three force moments corresponds to motion of a liquid in a film: 

( 4 . 4 ~ )  

(4.4b) 

(4.4 c) 

Formulae (4.4) are written for small folding perturbations in dimensional form ; M ,  
is the bending moment due to longitudinal compression by the viscous force and 
gravity, opposed by surface tension; M ,  is the moment of the viscous stresses due to 
motion of a liquid particle along a curved trajectory (also affected by surface tension); 
M3 is the moment of the viscous stresses due to curvature change with time. In analogy 
to the case of liquid jet buckling considered by Tchavdarov et al. (1993), as the distance 
between the slit exit and the plate decreases, the moment M ,  increases sharply, since 
its magnitude is determined by the leading derivative ak/az = a3H/az3. Therefore, for 
sufficiently small heights L, the bending moment M I  cannot overcome M2 and the flow 
in the film is stable. The bending moment M ,  begins to dominate only for heights above 
a critical one corresponding to given flow parameters. 

Figure 4 shows the pattern of the critical folding height at smaller flow rates as 
surface tension increases. According to ( 4 . 4 ~ )  this means that an increase in surface 
tension, in the main, reduces the bending moment M,, which leads to increase of the 
critical height. At higher flow rates compressive viscous force dominates the moment 
M,, whereas surface tension cannot practically compete with it. As a result, at higher 
flow rates the critical folding height becomes practically independent of surface 
tension. Similar trends have been found at the onset of buckling of liquid jets 
(Tchavdarov et al. 1993). 

Figures 3 and 4 show that the critical height L,/ho is nearly independent of the flow 
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rate. This results from the fact that the non-dimensional viscous compressive force 
8a0 dwO/dz is only slightly dependent on it, and so is thus the leading part of the non- 
dimensional bending moment (8a0 dwo/dz) H .  

To verify this, we neglect small effects of surface tension and gravity, and consider 
instead of (3.1) the following non-dimensional model problem similar to that of 
Tchavdarov et al. (1993) for buckling jets: 

daowo 
dz 

(4.5a, b) 

z = O :  a O = l ,  w o = l ;  z = L :  w o = E ,  (4.5 c-e) 

where E = wy/w: is a given parameter. 
Equations (4.5a, b) are obtained from (2.22a, b, c).  The boundary condition at the 

plate (4.5e) corresponds to a permeable plate. This condition enables us to mimic the 
deceleration of the film by the plate in the case when a given velocity of liquid suction 
into the plate w! is less then wi and thus, E = w!/w: < 1. As shown by Tchavdarov et 
al. (1993) this is a realistic first approximation of the unperturbed flow. _ _  

a0 = E-", wo = E". 
The solution of (4.5) is 

(4.6a, b) 
The compressive force is thus 8a0 dwO/dz = 8 In E = 8 In (wy/w:). It depends only 

slightly (logarithmically) on w: and so does the leading part of the bending moment. 
Therefore, L J h ,  based on the model unperturbed flow depends only slightly on w: (as 
well as on the flow rate) for small values of E. The corresponding results for buckling 
jets are shown in Tchavdarov et al. (1993, figure 5) .  

Similarly, the non-dimensional compressive force and the moment of force based on 
the unperturbed solution (3.4) and (3.6) for an impermeable plate depend only slightly 
on the flow rate. The latter manifests itself in the near-independence of the critical 
height Ll/ho of the flow rate. The corresponding results for buckling jets are shown in 
Tchavdarov et al. (1993, figure 12). 

Solution of the eigenvalue problem (3.10) and (3.11) enables us to predict the folding 
frequency w* .  The non-dimensional folding frequency at the onset of instability, 

0* L 
(4.7a, b) - w = -  w: = Im{Y>, 

is plotted in figure 5 .  
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The experimental data of Griffiths 8z Turner (1988) is not used for comparison in the 
present work for the following reasons. First, their results on impingement of a plane 
jet on an interface between two liquids are outside the scope of the present 
consideration, where the free surface of the film is supposed to be free from large 
stresses; the latter is characteristic of liquid films in air. Second, their results on liquid 
films impinging upon the free surface of a liquid were mostly obtained with rather thick 
films, where the length/thickness ratio seems to be too small to apply the quasi-one- 
dimensional approach. Third, several physical parameters, characterizing their 
experiment are unknown. 

5. Conclusions 
Folding instability in liquid films is analogous to buckling instability in impinging 

liquid jets. It sets in under the action of compressive viscous forces in the film. Under 
the quasi-one-dimensional approach, the folding height is predicted fairly well only up 
to a value of ,uQ’/pghi of the order of several units. For higher values of this parameter 
the theory should be based on the complete set of equations of hydrodynamics and 
account for the inertial effects. 

The nonlinear equations (2.9a-c) obtained in the present work are valid for large 
deflections of the film provided inequality (2.1) is not violated. Therefore, (2.9~~-c) 
form a basis for a future study of a fully nonlinear problem, which may describe the 
folding phenomenon after instability has set in. 
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